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Photonic Rutherford scattering: A classical and quantum mechanical
analogy in ray and wave optics

Markus Selmke and Frank Cichosa),b)

Molecular Nanophotonics, Institute of Experimental Physics I, Universit€at Leipzig, 04103 Leipzig, Germany

(Received 9 November 2012; accepted 11 March 2013)

Using Fermat’s least-optical-path principle, the family of ray trajectories through a special (but common)

type of a gradient refractive index lens nðrÞ ¼ n0 þ DnR=r is solved analytically. The solution

gives a ray equation rð/Þ that is closely related to Rutherford scattering trajectories; we therefore

refer to this refraction process as “photonic Rutherford scattering.” It is shown that not only do the

classical limits correspond but also the wave-mechanical pictures coincide—the time-independent

Schr€odingier equation and the Helmholtz equation permit the same mapping between the scattering

of massive particles and optical scalar waves. Scattering of narrow beams of light finally recovers

the classical trajectories. The analysis suggests that photothermal single-particle microscopy measures

photonic Rutherford scattering in specific limits and allows for an individual single-scatterer probing.

A macroscopic experiment is demonstrated to directly measure the scattering angle to impact

parameter relation, which is otherwise accessible only indirectly in Rutherford-scattering experiments.
VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4798259]

I. INTRODUCTION

More than 100 years ago in the year 1911, Ernest Rutherford
changed our picture of the atom with his famous theory on
the scattering of a-particles.1 In Rutherford scattering,
helium nuclei are deflected by the Coulomb potentials of
positive gold atom nuclei, as originally shown by Geiger
and Mardsen.2 This work was a milestone in the discovery
of the structure of the atom, revealing that most of the
mass of an atom is concentrated in a tiny nucleus. Thus,
Rutherford scattering is considered in almost every atomic
physics course, treated classically to provide the character-
istic angular distribution of scattered a particles. While a
classical showpiece illustrating Rutherford scattering may
be obtained from a paraboloidal hard-wall potential,3 a
direct display of the continuous trajectory, or measuring a
single deflection instead of the total cross section, remains
difficult.

Here, we present the photonic analog of Rutherford scat-
tering (see Fig. 1). It is given in the geometrical optics
approximation (GOA) by the deflection of rays (the classical
limit) or, in wave optics, as the scattering of waves by a 1/r
refractive-index profile. This profile is provided by a point-
like heat source in a homogeneous medium. Experimental
demonstrations of the effect can be achieved.

The paper is structured as follows. In Sec. II, the classical
mechanical and ray-optics formulation of the dynamics
of particles and trajectories of light in a 1/ r-“potential” are
presented. In Sec. III, the analytical solution for the
ray-optics case is derived. In Sec. IV, analogies of the ray-
optics solution are explored with respect to the classical
Rutherford scattering problem and an experimental demon-
stration is given in Sec. V. In Sec. VI, the wave-mechanical
pictures are explored. The correspondence between quan-
tum mechanical (QM) Coulomb scattering and the scalar
electric field in the refractive index field is revealed.
Thereafter, the correspondence to the classical ray picture
in the latter case is established via QM wave-packet scatter-
ing, finally recovering the photonic Rutherford trajectory
presented in Sec. IV.

II. CLASSICAL LIMIT: FERMAT’S PRINCIPLE

A differential equation suitable for both massive particles
and light is obtained via a variational principle, with fixed-
path endpoints, that unifies Maupertius’ (mechanics) and
Fermat’s (optics) variational principles:4,5

d2r

ds2
¼ r 1

2
n4ðrÞv2ðrÞ

� �
;

���� dr

ds

���� ¼ n2ðrÞvðrÞ: (1)

Here r is a vector denoting a point on the path and s is a step-
ping parameter that increases along the path. The difference
in treating light or massive particles rests in the proper
choice of the velocity v(r) and the parameter s.

For massive particles one can take n¼ 1 such that Eq. (1)
reduces to Newton’s second law. The usual classical dynam-
ics are obtained with the choice of the stepping parameter
ds¼ dt, by setting v2=2 ¼ E=m� V=m, the difference
between the total and potential energy per unit mass.5

Equation (1) can even be used to describe relativistic gravita-
tional mechanics of massive particles in a static space-time
metric by an appropriate non-unit refractive index.4,5

To describe the paths of light, Eq. (1) is to be supple-
mented by setting v to the phase velocity of light in matter
v¼ c/n, where c is the vacuum speed of light. This case cor-
responds to Fermat’s principle of the least optical path and
allows the calculation of light trajectories through a spatially
inhomogeneous refractive index field nðrÞ. This picture pro-
vides a classical particle picture of light propagation and cor-
responds to the zero-wavelength limit of wave optics.6 The
result is the “F¼ma” optics developed by Evans et al. and
explored by many others.7–10

In summary, Eq. (1) takes the following forms for par-
ticles and light, respectively:

Mechanics : m
d2r

dt2
¼ �rVðrÞ;

���� dr

dt

���� ¼ vðrÞ; (2)

Optics :
d2r

ds2
¼ r 1

2
n2ðrÞ

� �
;

���� dr

ds

���� ¼ nðrÞ: (3)
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The solution to Eq. (2) for a 1/ r potential is best known from
Kepler’s problem or Rutherford scattering (see Sec. IV).

While a rather artificial type of refractive index field
n2ðrÞ ¼ const:þ const:=r has been shown to yield all types
of Kepler orbits for light,5,9 we will now seek a more physi-
cal and common analogy in the optical domain. For this,
consider a point-like heat source that generates a temperature
profile TðrÞ ¼ T0 þ DTðrÞ in the surrounding medium with

DTðrÞ ¼ Q

4pjr
; (4)

which, according to Fourier’s law, decays with the inverse
distance r from the object to T0 at infinite distance (Q and j
are the heat-source power and the medium heat conductivity,
respectively).11,12 This temperature profile results in a refrac-
tive index profile that takes up the inverse distance depend-
ence with the thermo-refractive coefficient dn/dT as a
proportionality factor

nðrÞ ¼ n0 þ
dn

dT
DTðrÞ ¼ n0 þ Dn

R

r
; (5)

where n0 ¼ nðT0Þ is the unperturbed real-valued refractive
index, R is the radius of the heat-source, and Dn ¼ DTðRÞ
dn=dT is a real-valued refractive index contrast. With the

thermo-refractive coefficient dn/dT being a material parame-
ter and a given heat-source power Q, the contrast Dn is deter-
mined and characterizes a specific experimental situation.
This scenario is to a good approximation realized for the
steady state of an individual spherical embedded heat source
outside the sphere at r > R. As we will demonstrate, the
problem of finding the ray trajectories fulfilling Eq. (3) is
closely related to the scattering by an unshielded Coulomb
potential (i.e., Rutherford scattering).

III. EXACT SOLUTION

Because (by symmetry) the trajectories are confined
within a plane (see Fig. 2), cylindrical coordinates fr;/g
with the corresponding expressions for acceleration and gra-
dient are appropriate. A prime (0) will denote differentiation
with respect to the stepping parameter s. Fermat’s least opti-
cal path principle [Eq. (3)] then gives two equations for the
radial and angular coordinates

r̂ : r00 � r/02 ¼ �n0DnR
1

r2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
attractive=repulsive

�Dn2R2 1

r3|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
attractive

; (6)

ĥ : r/00 þ 2r0/0 ¼ 0: (7)

This set of coupled differential equations is equivalent
to the perturbed Kepler problem with its precessing orbit
solutions.13 Equation (7) yields the conserved optical angu-
lar momentum Lz ¼ r2/0 ¼ bn0, that is, L

0
z ¼ 0.7 The pa-

rameter b > 0, the so-called impact parameter, is the
distance of the approaching parallel ray to the optical axis
[see Fig. 2(a)]. Equation (6) involves the analogue to the
mechanical radial force terms and shows a 1=r2 interaction,
which is either attractive or repulsive depending on the sign
of Dn, and a perturbation by a 1=r3 term, which is always
attractive.

We now introduce the constant

n ¼ � n0

DnR
; (8)

which is a measure of the inverse strength of the heat-
induced refractive index gradient and encodes the polarity of
the interaction in such a way that a positive sign of n corre-
sponds to repulsion. Equation (6) can be recast in the usual
manner into an equation for u¼ 1/ r (e.g., from Binet’s orbit
equation,13 or see Chapter 3.5 in Ref. 14) using conservation
of angular momentum to get

Fig. 2. (Color online) Annotated sketch of a typical ray trajectory (thick line) rð/Þ [Eq. (10)] through the refractive index fields n(r) [Eq. (5)] with (a) Dn > 0

(attractive) and (b) Dn < 0 (repulsive).

Fig. 1. (Color online) Artist’s rendering of photonic wave packet scattering

by a thermal lens n(r) [Eq. (5)] around a hot nanoparticle.
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d2u

d/2
þ u½1 � b�2n�2� ¼ �n�1b�2: (9)

If the refractive index in the medium is homogeneous
(i.e., n ¼ 1), the familiar harmonic oscillator differential equa-
tion with unit angular frequency emerges and the solution
is u ¼ b�1sinð/Þ, which, in Cartesian coordinates with
y ¼ r sinð/Þ ¼ b, is the unperturbed ray [see the dashed line in
Fig. 2(a)]. If the profile is present, and requiring for the moment
that jbnj > 1, Eq. (9) has the form of the harmonic oscillator
differential equation plus a constant u00 þ c1u ¼ �c2, with
positive c1. This equation is solved by u ¼ ðc2=c1Þ½e cos
ð ffiffiffiffiffic1
p ð/� /0ÞÞ � 1� with the yet-to-be-determined constants e

and /0. Equation (9) is therefore solved by

rð/Þ ¼ p

e cosðc½/� /0�Þ � 1
; (10)

where the eccentricity e is allowed to be either positive or
negative and with the parameters

p ¼ ½b2n2 � 1�=n;
c2 ¼ 1� b�2n�2: (11)

Mathematically, the orbits described by Eq. (10) represent
perturbed hyperbolic trajectories with the particle being the
exterior (n > 0) or interior (n < 0) focus9 (see Fig. 2). The
orbits may show peculiar behavior, such as multiply revolv-
ing trajectories for n < 0, when the perturbation parameter c
approaches zero (see Fig. 3) and were already discussed by
Darwin (the grandson of Charles Darwin) in the context of
relativistic Rutherford scattering of electrons in 1913.15

Also, somewhat later in 1916, Sommerfeld, in his relativistic
corrections to the hydrogen spectra, encountered the bound
form of such orbits for the electron.16–18

To obtain the eccentricity e we reconsider the particular
choice of the stepping parameter in Eq. (3) and write again
in cylindrical coordinates

jr0j ¼ n ! r0
2 þ r2/02 ¼ nðrÞ2: (12)

The radius of closest approach is found by setting r0 ¼ 0 and
yields rm ¼ bþ n�1. Comparison of this expression to the
corresponding minimum radius as described by Eq. (10),
which gives rm ¼ p=ðe� 1Þ at the angle of closest approach
/ ¼ /0, yields the eccentricity e ¼ bn. Setting the denomina-
tor of Eq. (10) to zero yields the extreme angles h6

1 ¼ 6jc�1j
arccosð1=eÞ þ /0. Requiring that the ray approaches parallel
to the optical axis from negative infinity [see Fig. 2(b)], i.e.,
hþ1 ¼ p, will orient the solution in Eq. (10) according to the
imposed initial conditions. We then also find the angle of clos-
est approach

e ¼ bn;
/0 ¼ p� jc�1jarccosðe�1Þ: (13)

The parameters in Eqs. (11) and (13), together with Eq. (10),
now fully determine the ray trajectory. The scattering angle
h ¼ h�1 (the deflection angle of an incoming horizontal
ray)14 may be expressed as h ¼ 2/0 � p.

The previous treatment relied on the assumption, valid in
practical situations, that jbnj > 1. If the impact parameter
gets very small, c would become imaginary. This peculiarity
is formally due to the presence of the attractive inverse-cubic
interaction term that dominates the inverse-squared term at
small distances [see Eq. (6)]. Instead of Eq. (9) we must then
solve the differential equation u00 � c1u ¼ �c2 with positive
c1. Its general solution is

rsð/Þ ¼
ps

e1 expðcs/Þ þ e2 expð�cs/Þ þ 1
; (14)

with the positive perturbation parameter determined by c2
s

¼ �c2 and parameter ps ¼ �p. This ansatz allows the incom-
ing ray to have the correct distance at infinity [lim/!p sinð/Þ
rsð/Þ ¼ b] and gives the set of two generalized eccentricities

e1 ¼ �expð�pcsÞ
ps þ bcs

2bcs

� �
;

e2 ¼ �expðpcsÞ 1� ps þ bcs

2bcs

� �
: (15)

Solution (14) works for both the attractive and repulsive
cases. In the former case, the solution is a mixture of the
hyperbolic sine and cosine which describes trajectories
approaching from infinity and falling within a finite time into
the coordinate origin. It does so without a closest distance
rm. Both phenomena continue the limiting behavior of Eq.
(10), where the closest approach distance goes to zero and
the scattering angle h diverges to infinity as jbnj ! 1, i.e.,
the rays revolve ever more vigorously around the origin [see
the dashed lines in Fig. 3]. In the case of a repulsive interac-
tion the solution given above involves only the hyperbolic
cosine, equivalent to Eq. (10) with complex argument (c) for
the cosine. From the exact solution found here we will now
formulate a revealing approximation valid for most physical
situations, where jbnj ¼ ðb=RÞ � ðn0=jDnjÞ � 1.

IV. PHOTONIC RUTHERFORD SCATTERING

As the refractive index change itself is typically small for
most materials (jDnj � 10�3), and since b > R for the

Fig. 3. (Color online) Absolute scattering/deflection angle jhj (left axis) and

the normalized distance of closest approach rminðbÞ=b (right axis) vs. the nor-

malized impact parameter jbnj for fixed interaction strength jn�1j. Black

dashed-solid lines: Rutherford scattering; red (or dark gray) lines: exact solu-

tion; orange (or light gray) dashed lines: attractive. Clearly visible is the effect

of the additional attractive perturbative force allowing closer approaches and

weaker deflections for the repulsive case (n > 0) and stronger deflection in the

attractive case (n < 0). For bn� 1 the results converge—photonic Rutherford

scattering is a good approximation to the exact solution.

407 Am. J. Phys., Vol. 81, No. 6, June 2013 Markus Selmke and Frank Cichos 407

Downloaded 20 May 2013 to 139.18.110.156. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission



incoming rays, the product jbnj is typically much greater
than 1. This allows us to replace Eq. (10) by the solution to
Eq. (9) without the attractive perturbation term

rð/Þ � jnjb2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2n2 þ 1

p
cosð/� /0Þ61

; (16)

with 61 ¼ �n=jnj. This is the exact analogue to the classical
(non-relativistic) Rutherford scattering solution of Eq. (2) for
the potential VðrÞ ¼ Cr�1, given by

rRFð/Þ ¼
2Eb2=jCj

e cosð/� /0Þ61
; (17)

where an attractive interaction (C < 0) is represented by the
upper sign and a repulsive interaction (C > 0) by the lower
sign. The scattered particle trajectory is determined by its
total energy E ¼ mv2

0=2 and mass m. The interaction is deter-
mined by the Coulomb force constant C ¼ q1q2=ð4p�0Þ for
the two charges q1;2 and prescribes the mechanical force
FðrÞ ¼ Cr�2 r̂ acting on the scattered particle. The scatterer
is assumed to be fixed here, i.e., it has an infinite mass com-
pared to the scattered particle. The positive eccentricity of
the orbit is determined by e2 ¼ 4E2b2C�2 þ 1 and the angle
of closest approach is /0 ¼ p6arccosð1=eÞ. The angular
momentum of the particle relative to the scatterer at the ori-
gin is L ¼ mv0b, while its specific angular momentum (twice
the areal velocity14) is Lz ¼ L=m.

The deflection of photons by a weak gradient index lens
generated by a heated point-like absorber, described by Eq.
(16), is thus the complete photonic analogue of Rutherford
scattering of a particles by a single nucleus [Eq. (17)]. One
can therefore identify the photonic analogue of the potential
energy as V ! �nðrÞ2=2þ n2

0=2 � n2
0 n�1r�1, which decays

to zero at infinite distance. The total energy in this analogy is
E! n2

0=2 and the equivalent of the Coulomb force constant
is C! �n0DnR, as can be inferred from Eq. (6). The form
of Eq. (3) also requires the mass m to be set to unity in
optics.7 Hence, all further equations—the differential scatter-
ing cross section dr=dX with its famous sin�4ðh=2Þ depend-
ence, or the total cross section r>H of scattering by an angle
larger than some angle H—can be obtained using these
equivalences and the substitution 2E=C! n. The deflection
angle h can thus also be expressed analogously to Rutherford
scattering via

cotðh=2Þ ¼ bn: (18)

The observation that the total energy is positive requires a
few comments. Typically,5,7 it is stated that Eq. (3), jr0j2=2
�n2=2 ¼ 0, corresponds to the equation for the total energy
analogue, comprised of a kinetic energy term jr0j2=2 and a
potential energy term �n2=2, and thus the total energy in the
optical case would be equivalent to the mechanical scenario
at zero energy, E¼ 0. However, due to the inclusion of the
additional constant shift (þn2

0=2) of the potential energy
scale in V, necessitated by including n0 in the refractive
index profile [Eq. (5)], we find that here the mechanical
zero-energy scenario does not represent the optical problem
at hand (cf. footnote 15 of Ref. 7). Indeed, the parabolic
unit-eccentricity orbits of zero-energy particle scattering are
not the found (approximate) solutions for the ray trajectories.
Here, jr0j2=2þ V � n2

0=2 ¼ 0 and E can be identified with
the first two terms, yielding E ¼ n2

0=2 to be taken as the

mechanical total-energy analogue. Thus, only the unbound
(hyperbolic) trajectories from classical mechanics are attain-
able for n0 6¼ 0, with n0 being a real number corresponding
to a transparent medium.

Also notable is the discrepancy by a factor of 2 between
the expression for the distance of closest approach for the
family of trajectories rC from particle scattering and the
exact value from Eq. (12), rmð0Þ ¼ n�1 (see Table I). The
difference stems from the fact that for b! 0 the validity of
the approximation bn� 1 and thus Eq. (16) breaks down.
For a repulsive potential Eq. (14) then passes the point of
closest approach. The same argument explains the difference
between the specific closest distances rminðbÞ and rmðbÞ for
individual trajectories. For the repulsive case (Dn < 0),
Eq. (6) shows an additional attractive inverse radius-cubed
interaction resulting in a closer approach. Solving Eq. (12)
without such a term yields the photonic rminðbÞ value listed
in Table I. The exact trajectories will thus penetrate the clas-
sical Rutherford shadow region19,20 given by the paraboloid
rs ¼ 4n�1=ð1� cos /Þ. For bn� 1, the two expressions
coincide and the GOA shadow region behind a typical ther-
mal lens may thereby be determined.

V. EXPERIMENTAL DEMONSTRATION

Rutherford scattering is generally considered for many
scattered particles on many nuclei with random impact pa-
rameters. Thus, the measurable cross section delivers the
same results for attractive or repulsive Coulomb interactions.
The photonic equivalent can, however, be tested easily on a
single scattering center, even allowing measurement the sign
of the interaction (the sign of dn/dT). For this purpose, a
macroscopic experiment with a metal sphere embedded in a
transparent resin as shown in Fig. 4(a) can be used. Upon
heating of the central sphere by a high-power laser, one can
measure the direction and magnitude of the deflection of par-
axial thin laser beams according to Eq. (18). Using a screen
placed at a distance D of a few meters, one may easily
observe the deflection Dx � Dtanðn0hÞ on the screen. Figure
4(b) shows the result of such a measurement. The probing
beam has been focused by a lens with focal length 0.5 m,

Table I. Corresponding expressions in photonic and massive-particle Rutherford

scattering.

Quantity Photonic Particle

v(r) n(r) v(r)

V(r) Cr�1 Cr�1

C �n0RDn ¼ n2
0 n�1 q1q2=ð4p�0Þ

L n0b mv0b

E n2
0=2 mv2

0=2

rC 2n�1 C/E

rminðbÞ
1

n
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2n2 þ 1

q� �
rC

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2r�2

C þ 1

q� �

rsð/Þ
4n�1

1� cos /
2C=E

1� cos /

cot h
2

	 

bn 2Eb=C

r>H
p

n2

1þ cos H
1� cos H

� �
p

C

2E

� �2
1þ cos H
1� cos H

� �

dr
dX

1

2n

� �2

sin�4ðh=2Þ C

4E

� �2

sin�4ðh=2Þ
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producing a very fine beam. The offset b of this beam was
controlled by a 45� movable mirror as seen in Fig. 4(a).
Alternatively, the GOA shadow region behind such a speci-
men can be observed for a broad and parallel illumination.

The photonic Rutherford scattering can be seen directly
with the unaided eye. This could also be quantified to check
the deflection-to-impact parameter relation Eq. (18) via image
processing. Viewing an object through such a medium contain-
ing a heat point source will cause the viewed object to appear
warped according to the extrapolated paths as shown in Fig. 5.

Yet another nice physical effect can be demonstrated with
such an object. A refractive index profile of nðrÞ ¼ 1
þ 2GMc�2r�1 describes gravitational lensing—the path of
light in gravitational fields as predicted by Einstein’s theory
of general relativity.4,5,9,21–23 Therefore, the observed distor-
tion nicely models, for instance, the famous Einstein ring
phenomenon if a material with Dn > 0 is used. Some types
of glasses, such as Schott N-PK51, have this property.24

While it has proven rather tricky to embed a sphere inside a
homogeneous transparent body by hardening resin,25 it is a
feasible student project to create a proper specimen for a
deflection experiment by cutting a glass or acrylic cube in
half and drilling appropriate semi-spherical exclusions for
later reassembly with a fitting sphere inside.

A computer program for interactively visualizing these
effects is available in the online supplement to this article.26

The program can acquaint students with the theoretical

trajectory phenomenology and image distortion effects asso-
ciated with such a properly heated specimen.

In current research, photothermal single particle micros-
copy provides measurements on single photonic Rutherford
scatterers.27,28 A simple formalism starting from the ray
optics results presented here may be used to provide a semi-
quantitative minimal model for photothermal lensing micros-
copy of heatable metallic nano-particles,29 a method which
has recently reached the sensitivity of single molecules.30

VI. WAVE MECHANICAL RUTHERFORD

SCATTERING

Both alpha particles and photons obey wave-particle dual-
ity. Concepts from scalar wave optics can therefore be
applied to quantum particle mechanics, showing the close
relation of both. As seen in nuclear scattering experi-
ments,31,32 molecular interferometry data,33 or atomic aper-
ture diffraction experiments,34 interference effects can
conveniently be described by Fresnel diffraction.6,35 The
interaction of photons with matter is described by the dielec-
tric function � ¼ ffiffiffi

n
p

. This function thus defines a “photonic
potential” affecting the propagation of light, which is scalar
electric fields in the simplest form of wave optics. While the
equivalence of the wave-optics treatment of the spinless
Coulomb scattering problem to classical Rutherford scatter-
ing in terms of cross sections has been shown,36,37 we will
here showcase the correspondence in optics and use finite
width beams to recover the trajectories. To this end, the
equivalence between a scalar wave-optics treatment of scat-
tering by the refractive index profile n(r) [Eq. (5)] and the
quantum problem of wave-packet scattering on a bare
Coulomb potential shall be used.

A. Plane wave scattering

The stationary Schr€odinger equation (SE) for scattering
by a Coulomb potential reads HWC ¼ EWC. Here, the
Hamiltonian is composed of kinetic and potential energy
terms H ¼ �ð�h2=2mÞr2 þ C=r and the total energy of the
unbound scattered particle is E ¼ 1

2
mv2

0. A wave number k of
the incident particle-wave is defined through the de Broglie rela-
tion �hk ¼ mv0.38 The time-independent SE can be rewritten as

r2WC þ k2 � 2�k

r

� �
WC ¼ 0; (19)

Fig. 5. (Color online) (a) Camera setup to for the photonic scatterer. The

laser-heated metal sphere in transparent resin is placed 18 cm in front of a

square lattice pattern (lattice constant 0.43 mm). (b) The square pattern pho-

tographed through the medium appears warped by the thermal lens. The

deflection of rays by the photonic 1/r potential gives the illusion of a crunch-

ing of the original image photographed before the heating process (darker

lines) (enhanced online) [URL: http://dx.doi.org/10.1119/1.4798259.1].

Fig. 4. (Color online) Macroscopic experiment on a single Rutherford-like pho-

tonic scatterer. A sphere of radius R¼ 0.5 cm (with a small hole to enhance

absorption efficiency) is embedded in an acrylic block (PMMA, 65-mm cube)

with material properties j � 0:2 Wm�1K�1; dn=dT � �1:15� 10�4 K�1, and

n0 ¼ 1:49. The plot shows the results of an experiment with D¼ 2.98 m. The

heating laser power was Ph ¼ 0:8 W, giving a temperature estimate [Eq. (4)] of

DTðRÞ � 64 K. A fit of the data (solid line and 2r confidence band) with

Eq. (18) gives n ¼ ð501680Þcm�1 and thereby DTðRÞ ¼ ð5268ÞK, revealing

probably additional convective heat transport. The error bars were estimated

using a read-off accuracy of the laser spot’s center of intensity. The remaining

systematic deviation is likely due to the single-mold manufacturing process.
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where the interaction parameter � ¼ Ck=2E denotes the
strength and polarity of the potential, analogous to the force
constant C (see Sec. IV). A positive � corresponds to a repul-
sive potential and a negative � to an attractive potential.

The analytical solution was first given by Mott in 1928.39

A few months later a more elegant form was formulated
by Gordon,36 which can be found by the ansatz WCðrÞ
¼ eikzgðr � zÞ. The complex-valued function g describes the
perturbation of the incoming plane wave and finally trans-
forms Eq. (19) into a soluble differential equation for g. The
solution WC for the case of an incident plane wave reads38

WCðrÞ ¼ eikze�
p
2
�Cð1þ i�Þ1F1ð�i�; 1; ik½r � z�Þ; (20)

with 1F1ða; b; zÞ denoting the confluent hypergeometric func-
tion and CðzÞ being the complex-valued gamma function.
The pre-factors ensure a normalization to unity (jWCj2 ¼ 1)
at large distances (z! �1) from the scatterer. Equation
(20) reduces to the incoming plane wave for vanishing per-
turbation: WCðrÞ ¼ eikz for � ¼ 0. The amplitude of the
wave function described by Eq. (20) is shown in Fig. 6.

An asymptotic expansion of the confluent hypergeometric
function for kðr � zÞ ! 1 allows the wave function to be
separated into a scattered spherical wave with angle-
dependent amplitude f and a plane wave resembling the form
eikz þ f ðhÞeikr=r, although both terms will include logarith-
mic phase distortions due to the long-range character of the
Coulomb potential.38 Apart from corrections vanishing for
r !1, the scattering cross section reads

dr
dX
¼ jf ðhÞj2 ¼ �

2k

� �2 1

sin4ðh=2Þ
: (21)

Now we will write down the Helmholtz equation for the
scalar electric field of light U,6,35 r2U þ k2½nðrÞ2=n2

0�
U ¼ 0, with the refractive index profile given by Eq. (5).
One should think of this equation as being the analogue to
the SE with nonzero energy E ¼ n2

0=2 and potential energy
V ¼ �nðrÞ2=2þ n2

0=2, as in Sec. IV. We find

r2U þ k2 1þ 2DnR

n0r
þ Dn2R2

n2
0r2

� �� �
U ¼ 0: (22)

A comparison with Eq. (19) shows equivalence to first order
in the small quantity Dn=n0 � 1, and allows identification of
the interaction parameter � as

� ! �k
DnR

n0

¼ k

n
: (23)

Arguably, this identification could have been guessed with-
out this inspection simply from the definition of the parame-
ter � ¼ Ck=2E and the classical correspondence found
earlier with its prescription 2E=C! n. The solution WC

[Eq. (20)] to the SE of the Coulomb scattering problem can
thus be used to find the scalar field amplitude U in the case
of scattering of light by the inhomogeneous refractive index
field Eq. (5). Identifying U with WC, the wave-mechanical
particle problem can thus be used to obtain results for its cor-
responding optical phenomenon, similar to the mechanical-
optical analogy of Sec. II, which is the “F¼ma” optics
framework. The strength- and polarity-encoding parameter �
is found to be proportional to n�1 [Eq. (23)] that was the
inverse-strength parameter describing the light trajectories.

We have thus demonstrated the equivalence of the plane-
wave quantum mechanical Coulomb scattering problem and
plane-wave light scattering by our specific thermal lens n(r),
with the same approximation used in the correspondence for-
mulated in Sec. IV.

Now let us consider the connection between these wave-
mechanical descriptions and the previously studied classical
cases. While the shape of the wave function amplitude
(Fig. 6) resembles the family of trajectories for a given
energy but varying impact parameter [Fig. 2(b)], the resem-
blance is misleading. For a given constant wavelength k and
thus constant wavenumber, the wave function pattern is only
weakly dependent on the strength of the thermal lens (Dn)
while the family of trajectories would change significantly.
While classical dynamics and scattering descriptions require
the notion of paths and trajectories, in the wave-mechanical
scattering description no clear correspondence exists for the
case of a plane wave.40 It is only in the far field that the clas-
sical average particle number density coincides, up to an
additional zero-mean oscillation with an undetectably high
spatial frequency, with the quantum wavefunction ampli-
tude20 and thus with the classical expressions for the cross
section ðdr=dXÞ. This energy-independent coincidence of
classical and spinless quantum-mechanical scattering cross
sections,38 however, is a rather special coincidence41,42 for
the three-dimensional Coulomb problem and would fail in a
two-dimensional world.41 We will therefore now formulate
the strict classical limit that connects the wave and classical
descriptions.

B. Wave packet scattering

In order to draw the connection between the classical and
wave pictures both in optics and quantum mechanics as we
have described above, it is necessary to reconsider what con-
stitutes the classical limit such that a correspondence can be
expected. In the previous paragraph, it was shown that the
plane wave approach does not resemble the classical picture,
apart from the total far-field scattering cross section. In
optics, the transition is reached by letting the wavelength k
go to zero.6 In quantum mechanics, the transition is formally
achieved by �h! 0 and considering spatially localized wave
functions (cf. Ref. 38, Section 6). Due to the possession of
the exact solution in scalar wave theory, the transition to the
classical trajectories will be outlined in the following. The
quantum scattering problem of a wave packet (WP) will be
used to this end.

Fig. 6. (Color online) Plane-wave Rutherford scattering. Change in the wave

amplitude upon scattering jWkẑ
C ðx; zÞj

2 � 1, from Eq. (20). The dark shaded

bands alternate between positive and negative values. Parameters are

� ¼ 0:0214; k ¼ 14:4 lm�1. Dashed lines show the interference zone37

extent h0 ¼
ffiffiffiffiffiffiffiffiffiffi
p=kz

p
.
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Following Baryshevskii et al.37 and similar works,43,44

one can express an initial wave packet localized near (i.e., a
light-beam focused at) r0 at time t¼ 0 as

Uwp
0 ðr; 0Þ ¼

ð
dk AðkÞeik	ðr�r0Þ: (24)

The plane-wave spectrum A(k) defines the WP form in
space. For different momenta k, and thus possibly different
interaction parameters �k ¼ kC=2E or �k ¼ kn�1, the solu-
tion formerly written down for k ¼ k ẑ [Eq. (20)] can be
given in a fixed coordinate frame for an arbitrary direction of
the incident wave vector as

Uk
CðrÞ ¼ e�p�k=2eik	r Cð1þ i�kÞ1F1ð�i�k; 1; i½kr� k 	 r�Þ:

(25)

The time evolution of an arbitrary initial WP as described by
Eq. (24) can then be written as the superposition Uwp

C of the
individual plane wave solutions corresponding to the plane
wave spectrum components of this WP

Uwp
C ðr; tÞ ¼

ð
dk AðkÞe�ik	r0 Uk

CðrÞe�ixkt; (26)

where xk ¼ �hk2=2m for matter WPs and xk ¼ ck for light
pulses.44

Now, two approaches would yield the classical trajecto-
ries. A WP describing a massive particle localized in
all three spatial directions having a certain frequency
width Dx / Dk2 would have a corresponding spatial width
Dx / 1=Dk whose time evolution of its probability ampli-
tude jWwp

C ðr; tÞj
2

would trace the dynamics predicted by
classical Rutherford scattering, i.e., would follow r(t).43

Because we can also interpret Eq. (26) to give the optical
scalar field Uwp

C , we can recover the classical (ray) optics
limit by considering k !1 and constant energy
DE / Dk ¼ 0. Assuming non-constant energy would yield
a light pulse of duration Dt / 1=DE. Confining the WP in
two dimensions and assuming that only different incident
angles will contribute, i.e. having a constant wavelength k
and thus constant wave vector jkj ¼ �k ¼ n2p=k, a static
limit of ray optics with a well-defined impact parameter is
achieved. Further, we will consider an azimuthally symmet-
ric angle distribution for the wave vector spectrum.

More specifically, we will choose a polar angle spectrum
to be a Gaussian with an angular width of r#, such that it
takes the form

AðkÞ ¼ Aðk; #;uÞ ¼ dð�k � kÞ expð�#2=2r2
#Þ; (27)

where the wave vector has been expressed in spherical coordi-
nates. This results in a focused (non-normalized) WP which
has similar properties to the TEM00-mode Gaussian beam35

with a characteristic width scale given by x# ¼ 2=ðkr#Þ (see
Fig. 7). In fact, as is the case for the beam emerging from a
laser pointer, its lateral intensity follows closely a Gaussian
distribution of width x0: jWwp

0 ðxÞj
2 / expð�2x2=x2

0Þ, while
the axial intensity pattern is enveloped by a Lorentzian profile
with a corresponding Rayleigh range zR ¼ kx2

0=2: jWwp
0 ðzÞj

2

/ 1=ð1þ z2=z2
RÞ. Specifically, fitting reveals the relation

x0 � 0:8 x#, which is expected for the specific angular spec-
trum representation chosen for the beam.45

The solution to the time-dependent SE [Eq. (26)] with the
specific choice of the initial WP as described by Eq.(27),
then reads

Uwp
C ðr; tÞ ¼

ðp

0

d#

ð2p

0

dusinð#ÞAð#Þe�ik	r0 e�p�=2eik	r

� Cð1þ i�Þ1F1ð�i�;1; i½�kr�k 	 r�Þe�i�h�k
2
t=2m;

(28)

with �k ¼ � and the dot product of the wave vector with the
radius vector in spherical coordinates k 	 r ¼ �kr½cos h cos#
þ sin h sin# cos ð/� uÞ�.

To obtain the ray limit, we first note that the angular spread-
ing of the WP decreases—becomes paraxial and resembling a
ray—when the wavelength decreases, since r# / k=x#. We
then choose beams of a finite width x# and small angular
spread (i.e., paraxial) with a lateral offset in the x-direction of
the resulting stretched WP to some x0 � x#. In this case, one
must set k 	 r0 ¼ �k x0 sinð#Þ cosðp� uÞ. We then find the
WPs to be distorted by the scattering process such that the
probability amplitude jUwp

C ðrÞj
2

follows the classical
Rutherford scattering trajectory rðhÞ [Eq. (16)] with the plane
polar angle / now being the polar angle h, and the impact pa-
rameter set to the initial WP lateral offset b! x0 and the lens
strength parameter n! �k=�. This correspondence is shown in
Fig. 8 and is the analogue to Fig. 2(b). This, finally, is the
expected classical property of the quantum mechanical scat-
tering description as applied to optics.43

C. Outlook: Application in photothermal microscopy

The usefulness of this unified approach is illustrated in its
application to photothermal (PT) microscopy.46 For this limit,
it is instructive to look at the wave packet spreading modified
by the thermal lens [Eq. (5)] when positioned in front or
behind it; that is, by setting k 	 r0 ¼ �kz0cos# and to observe
the collimation for z0 < 0 or beam broadening for z0 > 0,
leading to a positive or negative enhancement of collected in-
tensity in PT transmission microscopy.27–29,47 In a PT micros-
copy experiment a focused beam is used to probe the
refractive index lens around a heated nanoparticle. For typical
setups, the beam waist is usually around x0 ¼ 281 nm and the
beam spread is around hdiv � 28

�
.

Fig. 7. (Color online) Initial wavepacket Uwp
0 ðrÞ [Eq. (24)] (image and solid

contours) and scattered wave packet Uwp
C ðrÞ [Eq. (28)] (dashed contours).

The parameters were �¼ 0:17;k¼ 14:4lm�1;r0¼ð150nmÞ x̂;r#¼ 27:7�,
with corresponding width scale x#¼ 0:286lm and a Gaussian beam waist of

x0 ¼ 0:256lm.
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Interestingly, PT single-particle microscopy as described
in Refs. 27–29, 46 deals with the interference zone encoun-
tered in Sec. VI A (Fig. 6) of plane wave quantum mechani-
cal Coulomb scattering. In this case, the interference zone
exhibits a vanishing angular extent h0 ¼ 6

ffiffiffiffiffiffiffiffiffiffi
p=kr

p
, thus

being typically inaccessible and is discarded in scattering
analysis thereby leading to the sin�4 dependence of the
detectable cross section. In PT microscopy, however, it is
widened up to the extent of the angular spread of the plane
wave contributions that make up the incident beam (i.e., the
angular spread of the probing laser beam). Consequently, the
interference zone corresponds to the detected angular do-
main of PT microscopy and determines the signal. On the
other hand, a deflection of the probing beam can be meas-
ured and the usual low-energy (wide lateral wave packet
width) limit of Rutherford scattering is attained. Deflections
of a single scatterer are thus easily optically accessible with
a quadrant photodiode.48
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